If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.04t^2+2t-200=0
a = 0.04; b = 2; c = -200;
Δ = b2-4ac
Δ = 22-4·0.04·(-200)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-6}{2*0.04}=\frac{-8}{0.08} =-100 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+6}{2*0.04}=\frac{4}{0.08} =50 $
| 5c^2+22c-48=0 | | 3x+9=9x+2 | | (4x+2)(3x-7)=90 | | 9d+8=26 | | 4c^2+c=8 | | 3(2y–1)+5=14 | | x+10+3x+30+5x+50=180 | | -11r+5r=18.r= | | 7y^2+16y=15 | | (4x+2)(3x-7)=100 | | 6(2x-6)=(x+4) | | -3=5(-5)x | | 2x-5=3x-10x= | | 2x+3-10=25 | | 5a^2+3a=20 | | 8a-5=2a+19 | | 8y+7y=15 | | -4x(-5)=3 | | 2(x2-2x)=5 | | x^2+19x+46=0 | | 4+n=(-9) | | 66,447+8.5x=25.75x | | x/x-1=60/40 | | 32a−26=−5 | | 55.98+0.14x=61.98+0.12x | | 11=-3(2x+1)+4+x | | x²+3x-8=0 | | 0=-x2+3x+4 | | 8j+2j-5+4=3j+6j-2+8 | | 3/4y+4=-8 | | x^2=20,25 | | 3(4x-3)+2x-x=-87 |